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Soliton formation from a pulse passing the zero-dispersion point
in a nonlinear Schrödinger equation

S. R. Clarke and R. H. J. Grimshaw
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We consider in detail the self-trapping of a soliton from a wave pulse that passes from a defocusing region
into a focusing one in a spatially inhomogeneous nonlinear waveguide, described by a nonlinear Schro¨dinger
equation in which the dispersion coefficient changes its sign from normal to anomalous. The model has direct
applications todispersion-decreasingnonlinear optical fibers, and to natural waveguides for internal waves in
the ocean. It is found that, depending on the~conserved! energy and~nonconserved! ‘‘mass’’ of the initial
pulse, four qualitatively different outcomes of the pulse transformation are possible: decay into radiation;
self-trapping into a single soliton; formation of a breather; and formation of a pair of counterpropagating
solitons. A corresponding chart is drawn on a parametric plane, which demonstrates some unexpected features.
In particular, it is found that any kind of soliton~s! ~including the breather and counterpropagating pair!
eventually decays into pure radiation with an increase of energy, the initial ‘‘mass’’ being kept constant. It is
also noteworthy that a virtually direct transition from a single soliton into a pair of symmetric counterpropa-
gating ones seems possible. An explanation for these features is proposed. In two cases when analytical
approximations apply, viz., a simple perturbation theory for broad initial pulses and the variational approxi-
mation for narrow ones, comparison with direct simulations shows reasonable agreement.

PACS number~s!: 42.81.Dp, 47.35.1i
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I. INTRODUCTION

Nonlinear spatially inhomogeneous waveguides give
to a number of effects that are of interest by themselves,
also find important applications in such diverse fields as
tical dispersion-decreasing fibers~DDF’s! @1# and natural
waveguides for internal waves in the ocean with a shear-fl
background@2#. It is easy to understand that most nontriv
effects take place in the vicinity of a critical point, where t
waveguide’s dispersion or nonlinear coefficient chan
sign.

The critical points corresponding to wave propagation
the nonlinear Schro¨dinger~NLS! type were classified earlie
in Ref. @3#, where it was demonstrated that the most intere
ing one is that at which the sign of the dispersion coeffici
a changes. However, unlike the case when the nonlinear
efficient in the corresponding NLS equation changes its s
this case is not amenable to a consistent analytical cons
ation; hence systematic numerical simulations are neces

In a very recent paper@4#, the propagation of a wave puls
in this model was simulated for a situation whena changes
its sign, in a self-focusing medium, from anomalous~admit-
ting the existence of bright solitons! to normal ~for which
bright solitons do not exist!. Accordingly, disintegration of
an initial solitonlike pulse into radiation wave fields was co
sidered. Despite the apparent simplicity of the process
number of quite nontrivial features were found and qual
tively explained, the most interesting one being a doub
humped structure in the region of the normal dispersion.

For applications, particularly for those related to nonline
optics of fibers and planar waveguides, especially relevan
the reverse process, i.e., formation of a soliton from a w
pulse crossing into the anomalous-dispersion region from
PRE 611063-651X/2000/61~5!/5794~8!/$15.00
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normal-dispersion one. Previously, this process was con
ered by one of the present authors in@5# in a purely analyti-
cal approximation, based on a variational technique. As
will demonstrate in this work, the system of ordinary diffe
ential equations derived in Ref.@5# from the underlying
variable-coefficient NLS equation by means of the var
tional approximation indeed provides for quite an accur
description of the pulse’s dynamics in a parametric reg
where the approximation is relevant. Nevertheless, most
sults to be reported in the present work were produced
systematic direct simulations of the NLS equation.

A modified NLS equation, valid near the zero-dispersi
point for nonuniformly guided nonlinear wave propagatio
was introduced in previous work@5,4#:

iuz1a~z!utt12uuu2u5 iduttt , ~1!

whereu is the local amplitude of the guided wave,z andt are
the distance along the waveguide and the so-called redu
time ~see, e.g., the derivation of the corresponding nonlin
Schrödinger equation for optical fibers in@6#!, a(z) is the
above-mentioned sign-changing variable dispersion coe
cient, andd is the third-order-dispersion~TOD! coefficient,
which, generally, should be included in the case when
usual dispersion becomes very weak@6#.

Here we consider solutions to Eq.~1! for a model with a
continuous piecewise-linear dispersion:

a~z!5H 21, z,21,

z, 21,z,1,

1, z.1,

~2!
5794 ©2000 The American Physical Society
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which takes into consideration saturation of the dispers
after it has changed sign. This particular configuration c
easily be realized in experiments with DDF’s and, genera
adequately represents the situation that we aim to consi

We will consider the evolution~for z.21! of a pulse
represented by the following natural initial configuration:

u~z521,t !5A sech~ht!. ~3!

Simulations demonstrate that the evolution of other smo
unchirpedinitial pulses is very similar to that which is stud
ied in detail below for the initial condition~3!.

II. ZERO THIRD-ORDER DISPERSION

If TOD is negligible, Eq.~1! takes a simpler form,

iuz1a~z!utt12uuu2u50. ~4!

Both Eqs.~1! and~4! conserve two quantities, viz., the ‘‘op
tical energy’’

E5E
2`

`

uu~z,t !u2dt ~5!

and the momentum

P5
i

2 E2`

`

~uut* 2u* ut!dt. ~6!

These equations admit a Lagrangian representation. In
ticular, for the simplified Eq.~4!, theLagrangian densityis

L5
i

2
~u* uz2uuz* !2a~z!uutu21uuu4. ~7!

Thus for zero TOD anda(z) chosen as per Eqs.~2! and
~3!, the pulse evolution is governed by the equations

iuz1zutt12uuu2u50 ~21,z,1!, ~8a!

iuz1utt12uuu2u50 ~z.1!, ~8b!

with

u~21,t !5A sech~ht!. ~8c!

The evolution can be characterized by the two paramet
amplitudeA and inverse sizeh, of the initial pulse~3!, or,
alternatively, by its conserved energy and initial ‘‘mass
The ‘‘mass,’’ which isnot a conserved quantity of the NLS
equation, is defined as

M5E
2`

`

uu~z,t !udt. ~9!

For the initial condition~3!, M0[M (z521)5pA/h and
E52A2/h.

Since dispersion is constant forz.1, the system~8! can
be considered as an initial-value problem for the focus
NLS equation, with the initial condition atz51. Thus the
asymptotic solution will consist of a finite number of solito
represented by the discrete spectrum, and dispersive ra
tion represented by the corresponding continuous spect
n
n
,
r.

h,

ar-

rs,

g

ia-
m.

The number of solitons can be found via the inverse scat
ing transform for the NLS equation by solving the Zakharo
Shabat~ZS! eigenvalue problem. To this end, we define

q~ t !5u~z51,t !. ~10!

Assuming thatuqu decays asutu→`, the ZS eigenvalue prob
lem is based on the linear equations

iv t2lv5qw, ~11a!

iwt1lw5q̄v ~11b!

for auxiliary Jost functions uandv, the overbar designating
the complex conjugate.

The spectrum of the eigenvaluel consists of its continu-
ous part on the real axis and discrete eigenvalues, for wh
nontrivial solutions exist with functionsv and w decaying
exponentially asutu→`. The number of the discrete eigen
values in the upper half-plane is then equal to the numbe
solitons that will evolve from the wave packetq(t). These
discrete eigenvalues, in general, have a nonzero imagi
part.

Note that, for a symmetricq, which is the case here, ifl
is an eigenvalue, so also is2l̄. Solitary purely imaginary
eigenvalues then correspond to a single zero-velocity N
soliton, while multiple ones give rise to stationarybreathers.
If l has a nonzero real part, then the pair (l,2l̄) corre-
sponds to a pair of counterpropagating solitons having
locities of equal magnitude but opposite sign.

Thus, a two-stage process can be used to solve Eqs.~8!.
First, Eq. ~8a! is integrated fromz521 to z51, using a
standard numerical method pseudospectral int and fourth
order in z to obtainq(t) at z51. This is then used in Eqs
~11! to obtain the characteristics of the discrete spectr
from the ZS eigenvalue problem. In particular, we want
know the total number of discrete eigenvalues and the n
ber of discrete eigenvalues on the imaginary axis. These
numbers can be found, using the methods elaborated in R
@7# and @8#. Introducing

v̂5v exp~2 ilt !, ŵ5w exp~ ilt !, ~12!

we integrate Eqs.~11! over a finite regiont5@2L,L#, where
L@1, using the initial conditionv̂(2L)51 and finding the
transmission coefficientv̂(L)5a(l). The discrete eigenval
ues are then zeros ofa(l) in the upper (Im$l%>0) complex
half-plane. Sincea is an analytical function ofl, the number
of eigenvalues contained inside a closed curveG on the com-
plex plane is

N~G!5
1

2p i EG

a8~l!

a~l!
dl. ~13!

To obtain the total number of eigenvalues, letG be the
curve consisting of the real axis and a semicircle with
infinitely large radius in the upper half-plane. On this infini
semicircle, it can be shown thata(l)→1; thus the total
number of eigenvalues is

N5
1

2p i E2`

` a8~l!

a~l!
dl. ~14!
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FIG. 1. A comparison of a numerical solutio
to Eq. ~8! with the perturbation solution~18! for
M052p and E52, which correspond tom
51/16 andg52 in Eqs.~15! and ~17!. The nu-
merical and perturbation solutions are shown,
spectively, by solid and dashed lines~which al-
most completely coincide!. The field uuu at ~a! t
50 and~b! z51.
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To obtain the number of discrete eigenvalues lying
actly on the imaginary axis, letG im be the perimeter of a
vanishingly thin but infinitely long rectangle enclosing th
positive imaginary axis. Then the total number of sta
~zero-velocity! solitons isNst5N(G im).

Before proceeding to full numerical solutions, we c
consider two different analytical approximations for a so
tion of Eq. ~8a! in the interval z5@21,1#, valid, respec-
tively, for long small-amplitude and short large-amplitu
pulses. For the long pulses, we define the variables

x5ht, u5Ac. ~15!

Then Eq.~8a! becomes

icz1zh2cxx12A2ucu2c50, ~16a!

with

c~z521,x!5sechx. ~16b!

Because we now want to consider a long small-amplitu
pulse, we assume thath,A!1, such that

h25m, A25g2m, ~17!

whereg is anO(1) parameter andm!1. We seek a pertur
bation solution in the form

c5@R0~x!1m2R2~z,x!1¯#exp$ im@f1~z,x!1m2f3~z,x!

1¯#%. ~18!

Note that theO(m) corrections,R1 andf2 , can be shown to
be identically zero. The initial condition~16b! then gives

R05sech~x!. ~19!

At O(m) we obtain

R0f1z5zR0xx12g2R0
3, ~20!

and therefore

f15 1
2 ~z221!~122 sech2 x!12g2~z11!sech2 x.

~21!

Next, atO(m2) it is found thatR2 satisfies the equation

R2z52z~2R0xf1x1R0f1xx!, ~22!

and consequently
-

-

e

R252 sech3 x~425 sech2 x!@ 1
4 ~z421!2 1

2 ~z221!

22g2@ 1
3 ~z311!1 1

2 ~z221!##. ~23!

The amplitude obtained from this perturbation solution
compared with a numerical solution in Fig. 1. As is seen,
agreement is excellent. This perturbation solution would
expected to be valid for

h2A2!1 or E!2~M0 /p!1/2. ~24!

In the limit E→0, while M0 remains finite, it is apparen
that atz51 the perturbation solution obtained by means
the above method is

q~ t !'A sech~ht!, ~25!

in which case the variable-dispersion region is simply t
short to have any effect on the very long pulse. For t
initial condition, a well-known exact solution to the ZS e
genvalue problem was found by Satsuma and Yajima@9#.
They showed that the solution consisted ofN stationary soli-
tons and a radiative component, where

N5F2M01p

p G , ~26!

@•# standing for the integer part. ForM05Np, whereN is a
positive integer, the radiation component is absent, and
solution consists purely ofN interacting solitons. Example
of such solutions forM0@p can be found in Ref.@10#.

For short pulses, the variational approach proposed
Ref. @5# can be used. To this end, we assume an ansatz
the wave packet,

u~z,t !5A~z!sech@ t/a~z!#exp$ i @f~z!1b~z!t2#%, ~27!

whereA, a, f, andb are slowly varying real functions ofz.
Varying the averaged Lagrangian,

L~z;A,f,b,a!5E
2`

`

L dt, ~28!

with respect to these free parameters, it can be shown thA,
f, andb can be eliminated in favor of the pulse widtha, as

dE

dz
5

d

dz
~2aA2!50, ~29a!
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b5
1

4aa

da

dz
, ~29b!

df

dz
52

2a

3a2 1
5E

6a
, ~29c!

wherea(z) is the variable dispersion coefficient in Eq.~8a!
@a(z)5z in the case under consideration#, anda(z) satisfies
another variational equation,

d

dz S 1

a

da

dzD1S 4

p D 2S E

2a22
a

a3D50. ~30!

Since the initial chirp is zero, the appropriate initial cond
tions for Eq.~30! are

a5h21,
da

dz
50 at z521. ~31!

In Fig. 2, an example of a numerical solution to Eqs.~30!
and ~31! is compared with a full numerical solution of Eq
~8!. The agreement between the two solutions is quite go
except for a narrow region near the maximum ofuu(t)u at
z51. Subsequently, the solutions experience rapid variat
with z which the variational ansatz is unable to capture.

Using these analytical approximations and direct num
cal solutions, a few different types of solution to Eq.~8! can
be identified, by varying the initial mass and energy of t
pulse. The results are summarized in Fig. 3. In the ra
considered, four particular types of solution were found.
construct this diagram, many numerical simulations were
quired, with particular attention being paid to determini
the boundaries between the different regions. Of cou
these boundaries can be determined to the accuracy sh
here only by using the two-stage numerical process
scribed above. If only direct numerical simulations are us
it becomes very difficult to gauge when a transition occu
For example, a prohibitively large integration time is need
to distinguish between the decaying-radiation and sm
amplitude solitons, whereas this distinction can easily
made by considering the ZS eigenvalue problem.

For a small initial massM0 , we find no discrete eigen
values of the ZS scattering problem, so the pulse comple
decays into dispersive radiation, in which caseuuu has a
maximum att50 and decays monotonically withutu. It is
worth noting that near theR-C boundary, a double-humpe

FIG. 2. A comparison of a numerical solution of Eq.~8! with the
variational approximation~27! for M05p/2 andE54. The numeri-
cal and variational solutions are shown by solid and dashed li
respectively. The fielduuu at ~a! t50 and~b! z51.
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structure can form atz.1 with symmetric local maxima
away fromt50 ~which resembles a structure found recen
in the same model with the reverse direction of the disp
sion change@4#!; however, eventually the pulse decays into
monotonically decreasing structure. An example of suc
solution in shown in Fig. 4. ForM0→0, the evolution of the
pulse atz.1 is reasonably well approximated by the sol
tion of the variational equation~30!.

As M0 is increased, there are two possibilities. In the fi
case, which occurs for small values ofE, a single discrete
eigenvalue appears on the imaginary axis. This correspo
to the ‘‘mass’’ of the pulse now being sufficiently large
form a soliton. Thus the asymptotic solution consists o
stationary soliton and dispersive radiation~see the example
in Fig. 5!.

The second case occurs for larger values ofE. Here, for
sufficiently large values of the initial mass, the chirp h
been reduced sufficiently for the above-mentioned doub
humped structure to develop into a pair ofcounterpropagat-
ing solitons. This corresponds to a pair of complex discr
eigenvalues appearing out of the real axis, wherel56l r
1 il i , l r and l i both being real. An example is shown i
Fig. 6.

s,

FIG. 3. A classification of numerical solutions to Eq.~8! in
terms of the energyE and initial massM0. R denotes the region o
the radiative solutions,S the single-soliton solutions,B the bound-
state~breather! solutions, andC the pair of counterpropagating sol
tons.

FIG. 4. The evolution ofuuu for a radiative~no-soliton! solution
of Eq. ~8! with E52 andM05p/2.
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In the last regime, a stationarybreather or bound-state
solution forms which asymptotically consists of a pair
interacting solitons. An example of this is shown in Fig.
This can happen in two different ways. If theC→B transi-
tion is considered, this occurs when the chirp has been
duced sufficiently that it no longer causes splitting of t
solitons. In terms of the ZS eigenvalue problem, this cor
sponds to the two eigenvalues approaching each other
point on the imaginary axis. After their ‘‘collision’’ on the
imaginary axis, two purely imaginary eigenvalues appe
corresponding to two zero-velocity solitons. For theS→B
transition, this simply corresponds to the ‘‘mass’’ having i
creased sufficiently to give rise to a new zero-velocity so
ton. This second soliton, like the one that forms in theR
→S transition, appears out of the origin and corresponds
purely imaginary eigenvalue.

Within the framework of the ZS eigenvalue problem, g
neric transitions that lead to the formation of a pair of cou
terpropagating solitons take place when two eigenvalues
pear out of the continuous spectrum, such as occurs for
R→C transition, or two imaginary eigenvalues collide a
subsequently reshape into a pair of complex eigenval
which occurs for theB→C transition. No evidence has pre
viously been reported to our knowledge of a transition wh
a single imaginary eigenvalue splits into a pair of comp
eigenvalues. Thus, from theoretical considerations, we wo
expect aB region always to occur between theSandC ones,
giving rise to a transition chainS→B→C. This intermediate
B layer must disappear at atriple point, where theR andC

FIG. 5. The evolution ofuuu for a single-soliton solution of Eq
~8! with E51 andM05p. Here, approximately 95% of the energ
of the initial pulse is transmitted to the soliton.

FIG. 6. The evolution ofuuu for a pair of counterpropagating
solitons in Eq.~8! with E53 andM053p/2. Here, approximately
93% of the energy of the initial pulse is transmitted to the t
solitons.
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regions become adjacent, as again the transitionR→C is
admitted by the general analysis. ForM0.1.1 the S→B
→C transition occurs as expected; however, forM0,1.1 no
evidence of the above-mentioned intermediateB layer could
be found. Nevertheless, because direct splitting of a sol
into a pair of symmetric counterpropagating ones obviou
contradicts the principle of continuity and therefore cann
take place in a model governed by a smooth differen
equation, we conjecture that the missing intermediateB layer
does exist, but it is too thin to be detected using the curr
numerical techniques.

If the initial ‘‘mass’’ of the pulse is fixed, say, to the valu
M051, it is apparent that as the energy is increased
number of solitons goes through the transition 1→2→0.
This result appears counterintuitive, as one would expect
number of solitons to increase monotonically with the e
ergy. However, this transition can be explained by the infl
ence of the pulse’s chirp atz51. As E is increased, the
strength of the chirp increases too. Thus, while for sm
values ofE the chirp may have little effect on the pulse an
one soliton is able to form, for larger values of the energy
chirp becomes strong enough to split the single soliton int
pair of solitons@11#. For even larger values of the chirp, th
pair is destroyed. One possibility could be to split the tw
solitons into four moving ones; however, because the mas
z51 is not sufficient to form four solitons, the pulse deca
into radiation.

III. FINITE THIRD-ORDER DISPERSION

In this section, we consider solutions to Eq.~1!, supple-
mented by Eqs.~2! and ~3!, under the assumption thatd is
small (d!1) but finite. Therefore, the pulse evolution is no
governed by the system

iuz1zutt12uuu2u5 iduttt ~21,z,1!, ~32a!

iuz1utt12uuu2u5 iduttt ~z.1!, ~32b!

with

u~z521,t !5A sech~ht!. ~32c!

For z.1, we are again dealing with a constant-coefficie
equation, which is, however, no longer integrable~note that
this equation, with both constant and periodically modula
coefficients in front of the usual dispersion term, has

FIG. 7. The evolution ofuuu for a bound-state~breather! solution
of Eq. ~8! with E52 andM053p/2. Here, between 90 and 95% o
the energy of the initial pulse is transmitted to the breather.
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tracted a lot of attention in nonlinear fiber optics; see, e
Refs.@12–14# and references therein!. Thus, only direct nu-
merical simulations can be used to obtain the solutions.

In the consideration of the transition from anomalous
normal dispersion~i.e., focusing to defocusing!, which was
the subject of Ref.@4#, the pulse width achieved a minimum
at the zero-dispersion pointz50, and consequently TOD
was becoming more important as this point was approac
However, in the present case the pulse width achieve
maximumat z50 and, in general, a minimum nearz51.
Thus, due to the the underlying assumptionudu!1, it would
not be expected that TOD would be significant until well in
the focusing~anomalous-dispersion! region. Hence the effec
of TOD on the pulse can be estimated by comparing
magnitude of the two constant-coefficient dispersion ter
If the pulse width isO(a), then

Uduttt

utt
U; udu

a
. ~33!

From Figs. 4–7 it is apparent that, for all cases,amin,h21,
and therefore TOD can be neglected if

udu!
2M0

2

p2E
. ~34!

When TOD is taken into consideration, it manifests its
in three ways. First, TOD destroys the symmetry of t
pulse. This is most dramatically seen if one considers
effect of TOD on the radiative solutions, an example
which is shown in Fig. 8 for a small value of the TO
coefficient, d50.01. In the defocusing~normal-dispersion!
region (21,z,0), it is apparent that TOD has little effec
However, in the focusing~anomalous-dispersion! region (z
.0), TOD completely destroys the symmetry of the pu
well before the minimum of the pulse width is reache
Comparing this with Fig. 4, it is apparent that, neverthele
the effect of TOD far away from the zero-dispersion po
does not change the radiative type of the solution.

The second effect of TOD, which is now well known,
that solitons are no longer localized, but rather genera
small-amplitude copropagating oscillatory tail~such nonlocal
solitary waves have been termed ‘‘nanopterons’’ by Bo
@15#!. Resonant generation of the tails in the context of
modified NLS equation including the TOD term has be
considered in several works; see e.g., Refs.@16,17#. For a

FIG. 8. The evolution ofuuu for the solution of Eq.~32! with
E52, M05p/2, andd50.01, demonstrating the effect of the third
order dispersion on the radiative solution that was shown in Fig
for the d50 case.
.,

d.
a

e
s.

f

e
f

e
.
s,
t

a

e

single soliton with speedc and amplitudeA, it was demon-
strated in Ref.@17# that, ford!1, the tail has a wave numbe

kr52d212c1O~d! ~35!

and amplitude

Ar'
pK

d
expS 2

p

2dAD , ~36!

whereK'8.58. For the single-soliton solutions consider
in Sec. II, the tail generation is a major consequence of T
~not shown here!.

The symmetry breaking and appearance of resonant o
latory waves are clearly apparent if the effect of TOD on t
counterpropagating soliton pair solutions is considered.
example is shown in Fig. 9. Withd50, both solitons had the
same amplitude and equal but opposite speeds. Howe
nonzero d destroys this symmetry. For positived, the
leftward-propagating soliton is now reduced in amplitu
and its speed decreases, whereas for the rightw
propagating soliton the amplitude and speedincrease. The
copropagating oscillatory waves~tail generation! can be seen
both in the evolution of the wave field in Fig. 9~a!, and by
examining its Fourier transform, which is shown~on the
logarithmic scale! in Fig. 9~b! at z515. For the smaller soli-
ton, the tail can be observed to the right of it, correspond
to the peak in the Fourier transform atk'23.5. For the
larger soliton, it is more difficult to observe its tail in th
evolution plot; however the front of this wave group can
seen starting to propagate rightward from the pulse atz'2.
These waves correspond to the well-pronounced peak in
Fourier transform atk'25.5

Finally, we consider the effect of TOD on the breath
that could exist atd50. In this case, a major effect issplit-
ting of the breather into two asymmetric solitons, provid

4

FIG. 9. The solution of Eq.~32! with E53, M053p/2, andd
50.2, demonstrating the effect of the third-order dispersion on
counterpropagating soliton-pair solution, which was shown for
cased50 in Fig. 6.~a! The evolution of the fielduuu; ~b! the abso-
lute value of the Fourier transform atz515 @note that the vertical
scale in~b! is logarithmic#.
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that d is sufficiently large, an example of which is shown
Fig. 10. Note that the possibility of splitting of a pulse und
the action of TOD is also known in the constant-coefficie
NLS equation~see, e.g., Ref.@12#!.

In the case shown in Fig. 10, the main breatherlike soli
propagates to the right, but there is also a very weak w
propagating to the left. Whether the leftward-propagat
wave is a soliton or just a packet of dispersive radiat
cannot be determined. As in Fig. 8, there are oscillatory
waves copropagating with the main soliton. The front
these waves can be seen propagating rapidly to the right,
the peak in the Fourier transform atk'25.3 @Fig. 10~b!# is
associated with these waves. In simulations of the same c
but with d50.1 ~twice as small, not shown here!, the main
breather soliton keeps a nearly zero velocity, and no sm
amplitude leftward-propagating wave is detected. Qual
tively, this latter case, with the smaller value ofd, is very
similar to what was shown in Fig. 7.

For each of the large-amplitude waves in Figs. 9 and 1
comparison of the observed copropagating tail waves ca
made with the predictions of Ref.@17#, namely, the expres
sions~35! and~36!. This is shown in Table I. For the smal
amplitude soliton from Fig. 9, the comparison was not ma
as the presence of the soliton with the larger amplitude
its tail renders the asymptotic analysis invalid for the sma
soliton. As can be seen from Table I for the domina
rightward-propagating soliton, the agreement between
theoretically predicted and observed values of the amplit
is good; however, there is a conspicuous discrepancy, e

FIG. 10. The solution of Eq.~32! with E52, M053p/2, and
d50.2, demonstrating the effect of the third-order dispersion on
bound-state solution shown in Fig. 7.~a! The evolution of the field
uuu; ~b! the absolute value of the Fourier transform atz523.
g
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cially in the case shown in Fig. 9, in the values of the wa
number. It is plausible that the discrepancy could be fixed
including the next-order term in the expansion~35!; how-
ever, one must also calculate the phase of the soliton
order to do this.

IV. CONCLUSION

In this work, we have analyzed in detail self-trapping o
soliton from a wave packet that passes from a defocus
region into a focusing one in a spatially inhomogeneous n
linear waveguide, described by a variable-dispersion N
equation, in which the dispersion coefficient changes its s
from normal to anomalous. The model can be realized
terms of two~at least! very different but realistic physica
applications: a dispersion-decreasing nonlinear optical fib
and natural waveguides for internal waves in the ocean
was found that, depending on the values of the~conserved!
energy and~nonconserved! ‘‘mass’’ of the initial pulse, four
qualitatively different outcomes of the pulse transformati
are possible: decay into radiation; self-trapping into a sin
soliton; formation of a breather; and formation of a pair
counterpropagating solitons. A chart of the correspond
parametric plane has been drawn, which demonstrates s
unexpected features. One of them is that, with increase of
energy while the initial ‘‘mass’’ is kept constant, a soliton,
pair of counterpropagating solitons, or a breather eventu
decays into pure radiation. Another noteworthy feature
that a direct transition from a single soliton to a pair of sy
metric counterpropagating ones seems virtually possible.
explanation for these features was proposed. In two ca
when analytical approximations apply, viz., a straightforwa
perturbation theory for broad initial pulses and the var
tional approximation for narrow ones, comparison with d
rect simulations shows good agreement.
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TABLE I. A summary of predicted and observed amplitud
and wave numbers for the oscillatory tail waves seen in Figs. 9
10, whered50.2. A and c are, respectively, the soliton ampl
tudes and speeds;kr andAr are the wave numbers and amplitud
predicted by Eqs.~35! and ~36!, while ko andAo are the observed
ones.

Figure A c kr Ar ko Ao

9 0.8 2.3 27.3 731023 25.5 631023

10 0.7 0.45 25.45 231023 25.3 331023
A.
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