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We consider in detail the self-trapping of a soliton from a wave pulse that passes from a defocusing region
into a focusing one in a spatially inhomogeneous nonlinear waveguide, described by a nonlinedingehro
equation in which the dispersion coefficient changes its sign from normal to anomalous. The model has direct
applications tadispersion-decreasingonlinear optical fibers, and to natural waveguides for internal waves in
the ocean. It is found that, depending on tkenserved energy andnonconserved‘mass” of the initial
pulse, four qualitatively different outcomes of the pulse transformation are possible: decay into radiation;
self-trapping into a single soliton; formation of a breather; and formation of a pair of counterpropagating
solitons. A corresponding chart is drawn on a parametric plane, which demonstrates some unexpected features.
In particular, it is found that any kind of solités) (including the breather and counterpropagating )pair
eventually decays into pure radiation with an increase of energy, the initial “mass” being kept constant. It is
also noteworthy that a virtually direct transition from a single soliton into a pair of symmetric counterpropa-
gating ones seems possible. An explanation for these features is proposed. In two cases when analytical
approximations apply, viz., a simple perturbation theory for broad initial pulses and the variational approxi-
mation for narrow ones, comparison with direct simulations shows reasonable agreement.

PACS numbd(s): 42.81.Dp, 47.35ti

I. INTRODUCTION normal-dispersion one. Previously, this process was consid-
ered by one of the present authord# in a purely analyti-

Nonlinear spatially inhomogeneous waveguides give ris€al approximation, based on a variational technique. As we
to a number of effects that are of interest by themselves, andill demonstrate in this work, the system of ordinary differ-
also find important applications in such diverse fields as opential equations derived in Ref5] from the underlying
tical dispersion-decreasing fibet®DF’s) [1] and natural variable-coefficient NLS equation by means of the varia-
waveguides for internal waves in the ocean with a shear-floional approximation indeed provides for quite an accurate
background?2]. It is easy to understand that most nontrivial description of the pulse’s dynamics in a parametric region
effects take place in the vicinity of a critical point, where the where the approximation is relevant. Nevertheless, most re-
waveguide’s dispersion or nonlinear coefficient changesults to be reported in the present work were produced by
sign. systematic direct simulations of the NLS equation.

The critical points corresponding to wave propagation of A modified NLS equation, valid near the zero-dispersion
the nonlinear Schidinger (NLS) type were classified earlier point for nonuniformly guided nonlinear wave propagation,
in Ref.[3], where it was demonstrated that the most interestwas introduced in previous woifls,4]:
ing one is that at which the sign of the dispersion coefficient
a gh.ang(_as. However, unlike the case when the nonlinea( co- iU,+ a(2) U+ 2|ul2u=i Suy,, 1)
efficient in the corresponding NLS equation changes its sign,
this case is not amenable to a consistent analytical consider- ) _ _
ation; hence systematic numerical simulations are necessarynereuis the local amplitude of the guided waweandt are

In a very recent papé#], the propagation of a wave pulse the distance along the_ wayegmde and the so—qalled re_duced
in this model was simulated for a situation wherchanges ~time (see, e.g., the derivation of the corresponding nonlinear
its sign, in a self-focusing medium, from anomaldagmit- ~ Schralinger equation for optical fibers if6]), (2) is the
ting the existence of bright solitonso normal (for which ~ above-mentioned sign-changing variable dispersion coeffi-
bright solitons do not exist Accordingly, disintegration of ~cient, andé is the third-order-dispersiofirOD) coefficient,
an initial solitonlike pulse into radiation wave fields was con-Which, generally, should be included in the case when the
sidered. Despite the apparent simplicity of the process, #sual dispersion becomes very weah. _
number of quite nontrivial features were found and qualita- Here we consider solutions to E() for a model with a
tively explained, the most interesting one being a doublefontinuous piecewise-linear dispersion:
humped structure in the region of the normal dispersion.

For applications, particularly for those related to nonlinear -1, z<-1,
optics of fibers and planar waveguides, especially relevant is
the reverse process, i.e., formation of a soliton from a wave a(z)=y z —l<z=l, 2
pulse crossing into the anomalous-dispersion region from the 1, z>1,
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which takes into consideration saturation of the dispersiomhe number of solitons can be found via the inverse scatter-
after it has changed sign. This particular configuration canng transform for the NLS equation by solving the Zakharov-
easily be realized in experiments with DDF's and, generally Shabat(ZS) eigenvalue problem. To this end, we define
adequately represents the situation that we aim to consider.

We will consider the evolutiorfor z>—1) of a pulse a(t)=u(z=1p). (10

represented by the following natural initial configuration: Assuming thatq| decays ast|— o, the ZS eigenvalue prob-

u(z=—1t)=Asedh(ht). (3) lemis based on the linear equations
Simulations demonstrate that the evolution of other smooth, ivy—Av=qw, (119
unchirpedinitial pulses is very similar to that which is stud- . —
ied in detail below for the initial conditio3). Wi+ AW=qu (11b

for auxiliary Jost functions wandv, the overbar designating

Il. ZERO THIRD-ORDER DISPERSION the complex conjugate.

If TOD is negligible, Eq.(1) takes a simpler form, The spectrum of the_ eigenvqlmeconsi_sts of its continu- .
ous part on the real axis and discrete eigenvalues, for which
iu,+ a(z)uy+2|ul?u=0. (4) nontrivial solutions exist with functions and w decaying

. ) . exponentially agt|—o. The number of the discrete eigen-
Both Egs.(1) and(4) conserve two quantities, viz., the “0p- yalyes in the upper half-plane is then equal to the number of

tical energy” solitons that will evolve from the wave packg(t). These
" discrete eigenvalues, in general, have a nonzero imaginary
E=J lu(z,t)|2dt (5) part.

Note that, for a symmetrig, which is the case here, ¥

is an eigenvalue, so also is\. Solitary purely imaginary
eigenvalues then correspond to a single zero-velocity NLS
i e . soliton, while multiple ones give rise to stationdmeathers
PZEJ_W(UUt —u*uydt. ® it \ has a nonzero real part, then the pair, {\) corre-
sponds to a pair of counterpropagating solitons having ve-
These equations admit a Lagrangian representation. In palocities of equal magnitude but opposite sign.
ticular, for the simplified Eq(4), the Lagrangian densitys Thus, a two-stage process can be used to solve [Bjs.
First, Eq. (89 is integrated fromz=—1 to z=1, using a
standard numerical method pseudospectrat and fourth
order inz to obtainqg(t) atz=1. This is then used in Egs.
(11) to obtain the characteristics of the discrete spectrum
Thus for zero TOD andr(z) chosen as per Eq&) and  from the ZS eigenvalue problem. In particular, we want to
(3), the pulse evolution is governed by the equations know the total number of discrete eigenvalues and the num-
ber of discrete eigenvalues on the imaginary axis. These two

and the momentum

[
L= 5 (u*u—uty) — a(@)|uf*+|ul*. Y

iug+zut2|ul®u=0 (-1<z<1), (8a) numbers can be found, using the methods elaborated in Refs.
iU+ U +2/u2u=0 (z>1), 8b) [7] and[8]. Introducing
with v=vexp —iit), W=wexp(i\t), (12
u(—11)=Asecfiht). 80 we integrate Eq911) over a finite region=[ —L,L], where

L>1, using the initial conditiord(—L)=1 and finding the
The evolution can be characterized by the two parameterdtansmission coefficierit(L)=a(\). The discrete eigenval-
amplitudeA and inverse sizé, of the initial pulse(3), or, ~ ues are then zeros a{(\) in the upper (InfiA}>0) complex
alternatively, by its conserved energy and initial “mass.” half-plane. Since is an analytical function ok, the number
The “mass,” which isnot a conserved quantity of the NLS Of eigenvalues contained inside a closed cdfvan the com-

equation, is defined as plex plane is
- 1 ram
M=f_m|u(z,t)|dt. ©) N(I‘)—ﬁ am d. (13
For the initial condition(3), My=M(z=—1)==mA/h and To obtain the total number of eigenvalues, Iebe the
E=2A%/h. curve consisting of the real axis and a semicircle with an

Since dispersion is constant far-1, the systen(8) can infinitely large radius in the upper half-plane. On this infinite
be considered as an initial-value problem for the focusingsemicircle, it can be shown that(\)—1; thus the total
NLS equation, with the initial condition at=1. Thus the number of eigenvalues is
asymptotic solution will consist of a finite number of solitons )
represented by the discrete spectrum, and dispersive radia- - i = a'd)
tion represented by the corresponding continuous spectrum. 2mi J - a(\)

d\. (14
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To obtain _the r_lumber (_)f discrete eigenval_ues lying ex- R,=2 secAx(4—5secRx)[% (z*—1)— 1 (22— 1)
actly on the imaginary axis, ldf;,, be the perimeter of a

vanishingly thin but infinitely long rectangle enclosing the —29 L (B+ 1)+ L (22— D)1 (23)
positive imaginary axis. Then the total number of static
(zero-velocity solitons isNg=N(Ijn). The amplitude obtained from this perturbation solution is

Before proceeding to full numerical solutions, we cancompared with a numerical solution in Fig. 1. As is seen, the

consider two different analytical approximations for a solu-agreement is excellent. This perturbation solution would be
tion of Eq. (8a) in the intervalz=[—1,1], valid, respec- expected to be valid for

tively, for long small-amplitude and short large-amplitude
pulses. For the long pulses, we define the variables h?A2<1  or E<2(My/m)Y2 (24)

x=ht, u=Ay. (15 In the limit E—0, while M, remains finite, it is apparent
Then Eq.(8a) becomes EE:taa;cz)v—elr;z;ahggrit:rbanon solution obtained by means of
i 2 2 2,
Yy 20t 287y 29=0, (163 40 A sechihD, 25
with
in which case the variable-dispersion region is simply too
p(z=—1x)=sechx. (16b) short to have any effect on the very long pulse. For this
initial condition, a well-known exact solution to the ZS ei-
Because we now want to consider a long small-amplitudgyenvalue problem was found by Satsuma and Yaijjia
pulse, we assume thatA<1, such that They showed that the solution consisted\b$tationary soli-
tons and a radiative component, where

h’=pun, A?=9?u, (17)
wherey is anO(1) parameter angk<<1. We seek a pertur- N=|——|, (26)
bation solution in the form ™

P=[Ro(X) + w2Ry(2,X) + - - 1expli u[ b1(z,X) + u2hs(2,X) [-] standing for the integer part. F& =N, whereN is a
positive integer, the radiation component is absent, and the
+-1} (18 solution consists purely dfl interacting solitons. Examples
of such solutions foMy> 7 can be found in Ref.10].
For short pulses, the variational approach proposed in
Ref. [5] can be used. To this end, we assume an ansatz for

Note that theD(u) correctionsR; and¢,, can be shown to
be identically zero. The initial conditio(lL6b) then gives

Ro=seclix). (19) the wave packet,
At O(x) we obtain u(z,t)=A(z)secht/a(z)lexp{i[ #(z) +b(2)t?]}, (27)
Ro¢1z=ZPOXX+272R8, (20) wher.eA, a ¢, andb are slowly _varying real functions af
Varying the averaged Lagrangian,
and therefore )
$1=13 (22— 1)(1—2 secRx)+2y%(z+ 1)sech x. L(ZiA,¢,b,a)=f_w£dt, (28)

(21)
with respect to these free parameters, it can be showrithat

Next, atO(w?) it is found thatR, satisfies the equation &, andb can be eliminated in favor of the pulse widihas

Ra,= —2(2Rpx 14+ ROd’lxx): (22 dE d
—= d—z(2aA2)=0, (299

and consequently dz
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FIG. 2. A comparison of a numerical solution of Ef) with the
variational approximatiof27) for M= 7/2 andE =4. The numeri- 1
cal and variational solutions are shown by solid and dashed lines,
respectively. The fieldu| at (@) t=0 and(b) z=1.

1 da O:“‘.....|

= 1o dz' (29D 0.0 0.5 1.0 1.5 2.0
M,/7
d_¢: _ 2a + E (299 FIG. 3. A classification of numerical solutions to E@) in
dz 3a? " 6a’ terms of the energ§ and initial masdV . R denotes the region of

the radiative solutionsS the single-soliton solution® the bound-
wherea(z) is the variable dispersion coefficient in E§a) state(breathey solutions, ancC the pair of counterpropagating soli-
[a(z) =z in the case under consideratipanda(z) satisfies tons.
another variational equation,
structure can form ag>1 with symmetric local maxima
away fromt=0 (which resembles a structure found recently
in the same model with the reverse direction of the disper-
sion changé¢4]); however, eventually the pulse decays into a
Since the initial chirp is zero, the appropriate initial condi- monotonically decreasing structure. An example of such a

d 2

dz

1 da
adz

4

s

E o

23

ﬁ— a =0. (30)

tions for Eq.(30) are solution in shown in Fig. 4. FaM — 0, the evolution of the
q pulse atz>1 is reasonably well approximated by the solu-
- a tion of the variational equatio(80).
= 1 _— —
a=h"> dz 0 atz L. (31) As My is increased, there are two possibilities. In the first

case, which occurs for small values Bf a single discrete

In Fig. 2, an example of a numerical solution to E@)  eigenvalue appears on the imaginary axis. This corresponds
and (31) is compared with a full numerical solution of Eg. to the “mass” of the pulse now being sufficiently large to
(8). The agreement between the two solutions is quite goodorm a soliton. Thus the asymptotic solution consists of a
except for a narrow region near the maximum|oft)| at stationary soliton and dispersive radiatigee the example
z=1. Subsequently, the solutions experience rapid variationi Fig. 5).
with z which the variational ansatz is unable to capture. The second case occurs for larger valuesoHere, for

Using these analytical approximations and direct numerisufficiently large values of the initial mass, the chirp has
cal solutions, a few different types of solution to E§) can  been reduced sufficiently for the above-mentioned double-
be identified, by varying the initial mass and energy of thenumped structure to develop into a pairaafunterpropagat-
pulse. The results are summarized in Fig. 3. In the rangéng solitons. This corresponds to a pair of complex discrete
considered, four particular types of solution were found. Toeigenvalues appearing out of the real axis, where=\,
construct this diagram, many numerical simulations were re--ix;, \, and\; both being real. An example is shown in
quired, with particular attention being paid to determiningFig. 6.
the boundaries between the different regions. Of course,

these boundaries can be determined to the accuracy show 37
here only by using the two-stage numerical process de-
scribed above. If only direct numerical simulations are used, 27

it becomes very difficult to gauge when a transition occurs.
For example, a prohibitively large integration time is needed ® '
to distinguish between the decaying-radiation and small-
amplitude solitons, whereas this distinction can easily be 07
made by considering the ZS eigenvalue problem.

For a small initial masd,, we find no discrete eigen-

values of the ZS scattering problem, so the pulse completely® 32 16 0 16 52
decays into dispersive radiation, in which cdsg has a i
maximum att=0 and decays monotonically withl. It is FIG. 4. The evolution ofu| for a radiative(no-solitor) solution

worth noting that near th&-C boundary, a double-humped of Eq. (8) with E=2 andM,= /2.
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FIG. 5. The evolution ofu| for a single-soliton solution of Eq. FIG. 7. The evolution oful for a bound-statébreathey solution
(8) with E=1 andMO: 7. Here, approximate|y 95% of the energy of Eq. (8) with E=2 andM 0:37T/2. Here, between 90 and 95% of
of the initial pulse is transmitted to the soliton. the energy of the initial pulse is transmitted to the breather.

regions become adjacent, as again the transi®enC is
. . . . . admitted by the general analysis. Fbly>1.1 the S—B
solution forms which asymptotically consists of a pair of_>C transition occurs as expected; however, Nog<1.1 no
interacting solitons. An example of this is shown in Fig. 7'evidence of the above-mentioned intermedBtayer could

T_hls_can ha_ppen In tV.VO different ways. If t E.E B transi- be found. Nevertheless, because direct splitting of a soliton
tion is considered, this occurs when the chirp has been re-

duced sufficiently that it no longer causes splitting of themto a pair of symmetric counterpropagating ones obviously

: . : contradicts the principle of continuity and therefore cannot
solitons. In terms of the ZS eigenvalue problem, this corre- : . :

: . take place in a model governed by a smooth differential
sponds to the two eigenvalues approaching each other at a

) ; . - e equation, we conjecture that the missing intermedsal@yer
point on the imaginary ax|5__Afte_r their _coII|S|on on the does exist, but it is too thin to be detected using the current
imaginary axis, two purely imaginary eigenvalues appear, o ical techniques
corre_s_pondlr_]g t_o two zero-velocity SOI'tOPS' Fo”r tﬁe_»B . If the initial “mass” of the pulse is fixed, say, to the value
transition, this simply corresponds to the “mass” having in-

g N . . My=1, it is apparent that as the energy is increased the
creased sufficiently to give rise to a new zero-velocity soli- : ”
. X . . number of solitons goes through the transition~2—0.
ton. This second soliton, like the one that forms in Re

= - This result appears counterintuitive, as one would expect the
— Stransition, appears out of the origin and corresponds to a . . . X

. . ) number of solitons to increase monotonically with the en-
purely imaginary eigenvalue.

Within the framework of the ZS eigenvalue problem, ge_ergy. However, this transition can be explained by the influ-

. " . . ence of the pulse’s chirp at=1. As E is increased, the
neric transitions that lead to the formation of a pair of coun- o .
) . . strength of the chirp increases too. Thus, while for small
terpropagating solitons take place when two eigenvalues ap- . .
. values ofE the chirp may have little effect on the pulse and
pear out of the continuous spectrum, such as occurs for the .
R—C transition, or two imaginary eigenvalues collide and one soliton is able to form, for Iarger_values_ of the energy the
subsequently réshape into a pair of complex eigenvaluegh'rp becomes strong enough to split the single soliton into a
which occurs for th8—C transition. No evidence has pre- pair of solitong[11]. For even larger values of the chirp, this

viously been reported to our knowledge of a transition wheré)air Is destroyed. One possibility could be to split the o
USTY D ep . €dg . Solitons into four moving ones; however, because the mass at
a single imaginary eigenvalue splits into a pair of complex

. . : . =1 is not sufficient to form four solitons, the pulse decays
eigenvalues. Thus, from theoretical considerations, we woul o
. into radiation.
expect aB region always to occur between tBandC ones,
giving rise to a transition chai8— B— C. This intermediate
B layer must disappear atteple point, where theR andC

In the last regime, a stationatyreatheror bound-state

IIl. FINITE THIRD-ORDER DISPERSION

In this section, we consider solutions to Ed), supple-
mented by Eqgs(2) and (3), under the assumption thatis
small (6<1) but finite. Therefore, the pulse evolution is now
governed by the system

iu,+zu+2/ulPu=iduy (—1<z<1), (329

iu,+ug+2/ulu=iduy (z>1), (32b)

with

lul

f) 4 32 c: 52 64 u(z=-—1t)=Asecliht). (320

FIG. 6. The evolution ofu| for a pair of counterpropagating FOr z>1, we are again dealing with a constant-coefficient
solitons in Eq.(8) with E=3 andMy=3/2. Here, approximately ~€quation, which is, however, no longer integrabiete that
93% of the energy of the initial pulse is transmitted to the twothis equation, with both constant and periodically modulated
solitons. coefficients in front of the usual dispersion term, has at-
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FIG. 8. The evolution ofu| for the solution of Eq.(32) with
E=2,My==/2, andé=0.01, demonstrating the effect of the third-
order dispersion on the radiative solution that was shown in Fig. 4
for the 6=0 case.

tracted a lot of attention in nonlinear fiber optics; see, e.g.,
Refs.[12—-14 and references therginThus, only direct nu-
merical simulations can be used to obtain the solutions.

In the consideration of the transition from anomalous to

normal dispersiorii.e., focusing to defocusingwhich was FIG. 9. The solution of Eq(32) with E=3, My=3/2, and&

the subject of Refl4], the pulse width achieved a minimum _g 5 'gemonstrating the effect of the third-order dispersion on the
at the zero-dispersion poirt=0, and consequently TOD  counterpropagating soliton-pair solution, which was shown for the
was becoming more important as this point was approachegases=0 in Fig. 6.(a) The evolution of the fieldu; (b) the abso-
However, in the present case the pulse width achieves @te value of the Fourier transform at= 15 [note that the vertical
maximumat z=0 and, in general, a minimum near 1. scale in(b) is logarithmid.

Thus, due to the the underlying assumptjéh<1, it would

not be expected that TOD would be significant until well into single soliton with speed and amplitudeA, it was demon-
the focusinganomalous-dispersipmegion. Hence the effect strated in Ref[17] that, for <1, the tail has a wave number

of TOD on the pulse can be estimated by comparing the a1
magnitude of the two constant-coefficient dispersion terms. Kr==3 c+0(9) (35
If the pulse width isO(a), then and amplitude

Suy| 4| ~ LK T

Ttt - (33 A, 5 ex 55A ) (36)

where K~8.58. For the single-soliton solutions considered
in Sec. Il, the tail generation is a major consequence of TOD
(not shown herg

2 The symmetry breaking and appearance of resonant oscil-
2E (34)  latory waves are clearly apparent if the effect of TOD on the

counterpropagating soliton pair solutions is considered. An

When TOD is taken into consideration, it manifests itselfexample is shown in Fig. 9. With= 0, both solitons had the
in three ways. First, TOD destroys the symmetry of thesame amplitude and equal but opposite speeds. However,
pulse. This is most dramatically seen if one considers th@onzero 6 destroys this symmetry. For positivé, the
effect of TOD on the radiative solutions, an example ofleftward-propagating soliton is now reduced in amplitude
which is shown in Fig. 8 for a small value of the TOD and its speed decreases, whereas for the rightward-
coefficient, 5=0.01. In the defocusingnormal-dispersion  propagating soliton the amplitude and speecrease The
region (—1<z<0), it is apparent that TOD has little effect. copropagating oscillatory wavégil generatiohcan be seen
However, in the focusinganomalous-dispersionmegion (z  both in the evolution of the wave field in Fig(&), and by
>0), TOD completely destroys the symmetry of the pulseexamining its Fourier transform, which is showan the
well before the minimum of the pulse width is reached.logarithmic scalgin Fig. 9(b) atz=15. For the smaller soli-
Comparing this with Fig. 4, it is apparent that, neverthelesston, the tail can be observed to the right of it, corresponding
the effect of TOD far away from the zero-dispersion pointto the peak in the Fourier transform kt=—3.5. For the
does not change the radiative type of the solution. larger soliton, it is more difficult to observe its tail in the

The second effect of TOD, which is now well known, is evolution plot; however the front of this wave group can be
that solitons are no longer localized, but rather generate seen starting to propagate rightward from the pulse=~a2.
small-amplitude copropagating oscillatory t@lich nonlocal These waves correspond to the well-pronounced peak in the
solitary waves have been termed “nanopterons” by BoydFourier transform ak~—5.5
[15]). Resonant generation of the tails in the context of the Finally, we consider the effect of TOD on the breather
modified NLS equation including the TOD term has beenthat could exist ab=0. In this case, a major effect &plit-
considered in several works; see e.g., Rgf$,17. For a  ting of the breather into two asymmetric solitons, provided

From Figs. 4—7 it is apparent that, for all cases;,<h?,
and therefore TOD can be neglected if

8] <<
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TABLE I. A summary of predicted and observed amplitudes
and wave numbers for the oscillatory tail waves seen in Figs. 9 and
10, where6=0.2. A andc are, respectively, the soliton ampli-
tudes and speedk; andA, are the wave numbers and amplitudes

_ -

.
%

= —

; ;
= — — —«— — predicted by Eqs(35) and(36), while k, andA, are the observed
= - -

= —— -

= > > ——  ———

~
= —

q 11

ones.

Figure A c k. A, Ko A,

- ‘ ‘ ‘ ‘ 9 08 23 -73 7x10°® -55 6x10°°
3 -32 16 0 16 32 10 07 045 -545 2x10° -53 3x10°

100 cially in the case shown in Fig. 9, in the values of the wave

number. It is plausible that the discrepancy could be fixed by

including the next-order term in the expansi8b); how-

107 ever, one must also calculate the phase of the solitons in
order to do this.

1078 ‘ ‘ ‘ IV. CONCLUSION

=10 -5 0 5 10

In this work, we have analyzed in detail self-trapping of a
esoliton from a wave packet that passes from a defocusing
region into a focusing one in a spatially inhomogeneous non-
linear waveguide, described by a variable-dispersion NLS
equation, in which the dispersion coefficient changes its sign
that 6 is sufficiently large, an example of which is shown in from normal to anomalous. The model can be realized in
Fig. 10. Note that the possibility of splitting of a pulse underterms of two(at least very different but realistic physical
the action of TOD is also known in the constant-coefficientapplications: a dispersion-decreasing nonlinear optical fiber,
NLS equation(see, e.g., Ref.12]). and natural waveguides for internal waves in the ocean. It

In the case shown in Fig. 10, the main breatherlike solitorwas found that, depending on the values of tbenserveyl
propagates to the right, but there is also a very weak wavenergy andnonconserved‘mass” of the initial pulse, four
propagating to the left. Whether the leftward-propagatingqualitatively different outcomes of the pulse transformation
wave is a soliton or just a packet of dispersive radiationare possible: decay into radiation; self-trapping into a single
cannot be determined. As in Fig. 8, there are oscillatory taikoliton; formation of a breather; and formation of a pair of
waves copropagating with the main soliton. The front ofcounterpropagating solitons. A chart of the corresponding
these waves can be seen propagating rapidly to the right, aghrametric plane has been drawn, which demonstrates some
the peak in the Fourier transform let= —5.3[Fig. 10b)] is  unexpected features. One of them is that, with increase of the
associated with these waves. In simulations of the same casenergy while the initial “mass” is kept constant, a soliton, a
but with 6=0.1 (twice as small, not shown hgrehe main  pair of counterpropagating solitons, or a breather eventually
breather soliton keeps a nearly zero velocity, and no smalldecays into pure radiation. Another noteworthy feature is
amplitude leftward-propagating wave is detected. Qualitathat a direct transition from a single soliton to a pair of sym-
tively, this latter case, with the smaller value &fis very  metric counterpropagating ones seems virtually possible. An
similar to what was shown in Fig. 7. explanation for these features was proposed. In two cases

For each of the large-amplitude waves in Figs. 9 and 10, avhen analytical approximations apply, viz., a straightforward
comparison of the observed copropagating tail waves can hgerturbation theory for broad initial pulses and the varia-
made with the predictions of Reff17], namely, the expres- tional approximation for narrow ones, comparison with di-
sions(35) and(36). This is shown in Table I. For the small- rect simulations shows good agreement.
amplitude soliton from Fig. 9, the comparison was not made,
as the presence of the soliton with the larger amplitude and ACKNOWLEDGMENTS
its tail renders the asymptotic analysis invalid for the smaller
soliton. As can be seen from Table | for the dominant B.A.M. appreciates support from the Department of
rightward-propagating soliton, the agreement between th#&athematics and Statistics at Monash Univerg@tayton,
theoretically predicted and observed values of the amplitud@ustralig and from the Australian Research Council through
is good; however, there is a conspicuous discrepancy, esp&rant No. A89927007.

FIG. 10. The solution of Eq(32) with E=2, My=3%/2, and
6=0.2, demonstrating the effect of the third-order dispersion on th
bound-state solution shown in Fig. (& The evolution of the field
|ul; (b) the absolute value of the Fourier transformzat23.
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